令和3年度	科日名	化学
고 세 2 부 1층	MHA	1r.

教科	科 理科 科目		科目	化学	単位 4単位		年次	2年次
使用教科	東京書籍『改訂 新編 化学』 用教科書							
第一学習社『セミナー化学基礎+化学』 副教材								

1. 担当者からのメッセージ (学習方法等)

- 科学的な思考、態度を養うとともに、以下に留意しながら進めていきます。 -実験レポート等でのPCの活用、特にデータ分析、提示方法について表計算ソフトを有効に利用する。 -必要に応じて、化学基礎での既習範囲にも触れながら、基礎基本の定着を図る。
- -問題演習を多めに取り入れる。

2. 学習の到達目標

以下について理解するとともに、日常生活や社会と関連付けて考察できようになる。

- 1. 気体、液体、固体の性質を探究し、物質の状態変化、状態間の平衡、溶解平衡および溶液の性質 2. 化学変化に伴うエネルギーの出入り、反応速度および化学平衡を探究し、化学反応に関する概念や法則 3. 無機物質の性質や反応を探究し、元素の性質が周期表に基づいて整理できること 4. 有機化合物の性質や反応を探究し、有機化合物の分類と特徴 5. 高分子化合物の性質や反応を探究し、合成高分子化合物と天然高分子化合物の特徴

3. 学習評価(評価規準と評価方法)

観点	a:関心·意欲·態度	b:思考·判断·表現	c∶技能	d∶知識•理解	
観点の主旨	化学的な事物・現象に関心をもち、主体的に探求しようとするとともに、科学的態度を身に付けている。	化学的な事物・現象の中に 問題を見いだし、探求する過程を通して、事象を科学的に 考察し、導き出した考えを的 確に表現している。	化学的な事物・現象に関する実験、観察などを行い、基本操作を習得するとともに、基本れらの過程や結果を的確に記録、整理し、自然の事物・現象を科学的に探求する技能を身に付けている。	化学的な事物・現象に関する基本的な概念や原理・法則について理解を深め、知識を身に付けている。	
評価方法	学習状況 探究活動 ノート	探究活動 ワークシート 観察・実験レポート 定期考査	探究活動 ワークシート 観察・実験	ワークシート 定期考査	

上に示す観点に基づいて、学習のまとまりごとに評価し、学年末に5段階の評定にまとめます。学習内容に応じて、それぞれの観点を適切に配分し、評価します。

4 学型の活動

4. 学習の	古							
月		主な評価の 学習内容		観点	│ - 単元(題材)の評価規準	 評価方法		
		1 87.14	а	b	С	d	>0(VC 1-1) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	11 Im 73 /24
4		物質の三態	0	0	0	0	物質の三態変化、蒸気圧、沸騰等 について、理解し、科学的な技能 や表現を用い、考察できる。	
5	物質の状態	気体の性質	0	0	0	0	ボイル・シャルルの法則・気体の状態法的式・分圧の法則・理想気体と実在気体について理解し、科学的な技能や表現を用い、考察できる。	
6		溶液の性質	0	0	0	0	溶解度と温度や圧力との関係、沸点上昇や凝固点降下と溶質の分子量、浸透圧について理解し、科学的な技能や表現を用い、考察できる。	
7		化学結合と固体の構造	0	0	0	0	金属結晶、イオン結晶の単位格子 の構造と種類、共有結合の結晶・ 分子結晶・非晶質の構造について 理解し、科学的な技能や表現を用 い、考察できる。	
8		熱化学方程式	0	0	0	0	熱化学方程式、ヘスの法則、様々な反応熱について理解し、科学的な技能や表現を用い、考察できる。	学習状況 探究活動
9	化学反応とエネルギー	電池と電気分解	0	0	0	0	電池の原理としくみ、電気分解の 原理、金属のイオン化傾向、ファラ デーの法則について理解し、科学 的な技能や表現を用い、考察でき る。	ノート ワークシート 観察・実験 定期考査
10		・化学反応の速さ ・化学平衡	0	0	0	0	化学反応速度、触媒、化学平衡, 平衡定数、ルシャトリエの原理について、理解し、科学的な技能や表現を用い、考察できる。	

11	+ 4% /1, A 44-	・炭化水素 ・アルコール等	0	0	0	0	有機化合物の特徴や反応性について、炭化水素、アルコール等、芳香族、高分子化合物において理解し、科学的な技能や表現を用い、考察できる。
12	有機化合物	·芳香族 ·高分子化合物	0	0	0	0	有祭 (さる。
1		·周期表 ·非金属元素	0	0	0	0	単体や無機化合物の性質や反応 に関する基本的な概念や原理・法 則及び周期表との関係を理解し、 科学的な技能や表現を用い、考察
2	無機物質	典型金属元素	0	0	0	0	できる。
3		遷移金属元素	0	0	0	0	

[※]表中の観点について a: 関心・意欲・態度 b: 思考・判断・表現c:技能 d: 知識・理解

[※] 原則として一つの単元 題材 で全ての観点について評価することとなるが、学習内容 小単元 の各項目において重点的に評価を行う観点 もしくは重み付けを行う観点 について○を付けている。